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Fourier Transformed Matrix Method of
Finding Propagation Characteristics of
Complex Anisotropic Layered Media

CLIFFORD M. KROWNE SENIOR MEMBER, IEEE

Abstract —A planar structure having arbitrarily located conductor lines
immersed in complex anisotropic media presents one with a very general
guided wave problem. This problem is solved here by a rigorous formula-
tion technique characterizing each layer by a 6 X6 tensor and finding the
appropriate Fourier transformed Green’s function matrix G of 2nX 2n
size. From G, a method-of-moments solution for the propagation character-
istics follows, including propagation constant eigenvalues and field eigen-
vectors at all spatial locations. The method is very versatile and can handle
a large class of microwave or millimeter-wave integrated circuit or mono-
lithic circuit problems, no matter how simple or complex as long as they
possess planar symmetry.

1. INTRODUCTION

DVANCES in materials technology are allowing the

contiguous growth of substances of considerably dif-
ferent properties. Present integrated-circuit processing
techniques allow various combinations of metals, dielec-
trics, and semiconductors to be layered together where
these materials may or may not be crystalline. Processing
can include vapor phasé (VPE), liquid phase (LPE), or
molecular beam expitaxial (MBE) growth for deposition of
layers of semiconductors or dielectrics. An additional
method for metal deposition includes electron-beam heat-
ing and vacuum deposition. The number of processing
techniques are numerous and have varying degrees of
success in enabling dissimilar materials to be deposited
adjacently. These techniques display a large range of capa-
bilities to make defect-free layers, uniform doping level
semiconductors, and controllable layer thicknesses.

We may expect to see in the future the use of magnetic
films [11, [2] (metallic or nonmetallic), uniaxial and biaxial
dielectric filrs [3}-[6], ferrite films, magnetically induced
semiconductor gyroelectric films, and widely varying com-
positions of compound films. such as binary, ternary, and
quaternary compounds [7]. MBE and some other methods
are encouraging the use of layers which are thin enough
(on the order of tens to hundreds of angstroms) to require
modification of the three-dimensional (3D) transport anal-
ysis (semiclassical or quantum mechanical) so as to mclude
the two-dimensional (2D) electron gas effect. The change
from 3D to 2D transport on the microscopic level after
appropriate analysis can be accounted for in terms of
macroscopic permittivity and permeability tensors.
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More creative use of materials, especially for monolithic
integrated circuits, will probably occur in the future. Be-
sides some of the more familiar classes of anisotropic
materials mentioned above, materials with optical activity
may be employed in integrated-circuit applications. Fi-
nally, very complex materials with a combination of bire-
fringent gyroelectric, gyromagnetic, optical rotation, or
other anisotropic properties may be utilized. Furthermore, '
the use of semiconductors, dielectrics, or magneto-materi-
als rotated off principal axes or convenient axis coordi-
nates can be envisioned.

Conventional methods either in direct or Fourier-trans-
formed space using planar symmetry are not general enough
to enable the interested worker in the microwave or milli-
meter-wave area to readily solve such complex problems
outlined above. The theoretical formulation presented in
this paper shows how to solve for the propagation constant
v and electromagnetic fields in a multilayered planar struc-
ture having complex anisotropic layers. From the field and
v solution, the characteristic impedance Z_  may also be
determined by an appropriate definition in terms of a
current—voltage power flow combination. The only restric-
tions to the formulation below are that the conductors are
assumed to be lossless and infinitesimally thick.

Expeditious ways of solving field problems based on
Maxwell’s equations, but avoiding gauge methods, are pos-
sible by using field matrix techniques. Solving the field
problem by eliminating all but one field component vari-
able generates a fourth-order partial differential equation
(PDE) for linear media. The resulting fourth-order PDE
can be extremely complex and unwieldly to handle; how-
ever, there is some justification for developing the solution
in such a manner if the medium has special symmetry.
Simpler PDE’s result if the problem is reduced down to
two field components. Two second-order PDE’s must be
employed in two field components to find the field solu-
tion. Matrix techniques using two field components often
have been used in the optics [8], [9] and microwave/elec-
tromagnetics [10] areas. Nevertheless, as the medium be-
comes more complex with less symmetry, the two-compo-
nent methods become increasingly difficult 10 implement.
Lack of conductor line symmetry also complicates the
two-component solution methods.

Use of four components has been shown in reflection
and transmission light problems to lead to simple PDE’s
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[11], [12]. A four-component method has the great ad-
vantage of enabling the use of only first-order PDE’s. The
four-component technique also has the ability to allow
direct field matching at layer boundaries or interfaces [13].
In {13], it is pointed out that such field matching avoids the
need to employ auxiliary equations in the two suppressed
field components if using the two-component method, thus
providing some economy in problem solving.

Here, a new formulation technique for solving the uni-
form (in the z-direction) waveguide propagation problem is
developed for layered media possessing complex aniso-
tropic properties. A four-component method is utilized by
adapting the 4 X4 matrix approach in [13] to the spectral
domain or Fourier-transform domain (FTD). Significant
advantage is gained by working in the FTD because Green’s
function convolution integrals for determination of field
quantities due to current sources are converted into alge-
braic products. The FTD process, in addition, treats asym-
metrical conductor lines in the same way as it treats
symmetrical conductor lines. Section II develops the nor-
mal mode field solution formulation in the FTD. One
should be alerted that the chosen column field vector used
here differs from [13] in the component selection and
arrangement. Section III gives the solution to the open or
uncovered multilayered guided-wave problem. The Green’s
function G which is derived pertains to a perfectly con-
ducting ground plane. From G, the procedure for determin-
ing the propagation constant vy is provided for the method-
of-moments numerical technique assisted by identical
expansion and test basis functions (Galerkin approach).
Determination of electromagnetic field components using
Y is also covered. Section IV provides the solution to the
closed guided-wave problem where the electromagnetic
fields are sandwiched between two ground planes.

II. NorMmAL MobpEt FIELD SOLUTION

Each layer has four eigenfunction field solution sets.
Superposition of these four normal mode sets of field
components constitutes the actual total field solution obey-
ing all boundary conditions (BC). In this section, the
normal modes are found for the mth layer without regard
to the BC’s. Imposition of the various BC’s as part of the
overall propagation constant y determination is done in
the following sections, where specific waveguide structures
are considered.

Time harmonic, plane guided-wave solutions propor-
tional to exp( jw? — yz) are assumed. Propagation constant
Y=a+ jB makes the wave + z-direction propagating if
B > 0. Insertion of the time harmonic nature of the plane
wave into Maxwell’s two curl equations creates the single
sourceless matrix equation

L V= joVy.

(1)

Magnetic current sources are not considered in the treat-
ment in this paper and electric current sources are included
by discontinuity BC’s at interfaces between layers. ¥/ and
Vi are column vectors containing electromagnetic-field
components in rectangular coordinates both tangential to
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the parallel interfaces (xz-plane) and parallel to the y-axis.
V/ consists of the electric-field E and magnetic-field H
components. V{ consists of the electric displacement field
D and the magnetic displacement field B components

E; D;
Ey Dy
E’ D!
ve=| 2|, w=| 2
= = B (2)
Hy B,
| H | B

Primes indicate that these vectors contain x, y, and z
spatial variation with the z spatial variation to be dropped
shortly. Operator L is a 6 X6 matrix composed of single
partial-derivative operators. L, can be expressed as

(3)

where submatrix L, is a 3 X3 matrix

d d
0 % 3
|9 3
Ll'— dz 0 _E (4)
d ad
R S

To remove explicit z spatial dependence from (1), ¥, and
Vy are defined as
(52)

(5b)

The uniform (in z-direction) guided-wave problem with
(5) can now be solved in transformed space by going from
x direct space to k, reciprocal space. One-dimensional
Fourier-transform pair ( f, f) is defined as

Flkys )= [ 70x, y)e v ax

1’072
V,=V/e

— I ’pY2
Ve=Vge.

(6a)

100 9) =50 [ Flkp)errde,  (6b)

where f(x, y) is any real space variable. Using (5) and (6)
allows conversion of the guided-wave problem as given by
(1) into the FTD

LV, = joVy (7)

where tildes denote FTD variables and

(8)

d
0 Y E
L= -y 0 —jk, | (9)
d |
- _‘5 ]kx 0
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Fourier-transformed electromagnetic-fields 7, and ¥ are

E, b,
E)’ D}’

Y b,

o=, =] (10)
H.V By
A, | | . |

The medium of each layer can be characterized by a
single 6 X 6 constitutive tensor M in direct space. M relates
Vi toVy/

Vi= MV,

L [elh
M= {;,—f—;}. (12)
PR

¢ and i are, respectively, the permittivity and permeability
tensors. é can lead to electric birefringence in uniaxial and
biaxial dielectric crystals. Gyroelectric nonreciprocal be-
havior can be induced through é. This may occur by
applying a magnetic field to a doped semiconductor layer
in a Faraday, Voigt, or mixed configuration. Similarly,
using i, magnetic birefringence can be obtained in a dual
fashion in uniaxial and biaxial magnetic crystals.
Gyromagnetic nonreciprocal properties can be had by
applying a magnetic field to a ferrite material, for example.
p and p’ tensors are responsible for optical activity. M
could create nonlinear effects by being dependent on the
field vector V. M also could be dependent on the coordi-
nates x and y. It is possible that M might be dependent
on both the field vector and coordinates. In order to
maintain a linear problem solution, M is treated as a
constant tensor. x-coordinate variation of M cannot be
built back into the problem solution by such an assump-
tion, but y-coordinate variation can be by slicing the layer
with M y-dependence into thin sections. Fourier transfor-
ming (11) and using (5) yields

7= v,

(11)

where

(13)
Placing (13) into (7) produces the equation which must
be solved for the normal mode field vectors

LV, = joMV,. (14)
V, and V; vector components of ¥, (ie., E, I:Iy) are

algebraically expressible in terms of the other field compo-
nents using rows 2 and 5 of (14)

e jo S mal, (159)
i-—6'1
YW+ jk Vs = je 2 msV, (15b)
i=1
The solution of (15) is
6
V=Y a,(1-8,,)(1-85 )V, i=2,5 (16)

J=1
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where 8,  are Kronecker deltas. a,, coefficients are
al
1y
. a7

D,=mymss—

(18)

Mmyshisy

’ Y

a21=m25(m51—j—w)—m21m55 (192)

, ky

A3 = Mos{ My =~ 7 |~ Ma3Mss (19b)

ro_ _ X

Aoy = Myshi sy m55(m24+ : ) (190)

jw

7 kx

Ao = MysMsg — Mss mzs*’? (194d)

as, =msgm, —m (m —l) (20a)

51 52Moy 2\"Ma T g

, k.

Q53 = Msyhiyy — Moy | My T e (20b)

r— J

As54=Msy| Myt = myyMsy (200)
Jjw

7 kx

56 =Msy| Mo+~ = |~ MpMss. (20d)

In (18)-(20), m,, are the M tensor elements.
Rows 1, 3, 4, and 6 of (14) are first-order linear differen-
tial equations

. dV, LA
Wit —L=jo Y mV (21a)
dy =1
av, & .
-+ jk Vi=jo Y. myV, (21b)
dy X = i
I | . .
— Y- === je X myY, (21c)
dy =1
vy e
&~ k= o ¥ oma, (214)

=1

Using (16) to eliminate ¥, and ¥ from (21) produces

1 0 0 ofl"n v,

0 -1 0 ol|7 v,
14 Jl=r] | (22
wd 0 0O -1 0 v, 4

0 0 1| % vy

In (22), the matrix elements r,, of R” are

k.

r, = Mgg+ dsgmes + azo(mez + To—) (23a)
+ X

3, —m49+a59m45+a29( jw) (23b)
k

73 ‘msa"'azamsz‘*‘asa(’"ss “QT) (23c)
Y

74 _m19+a20m12+a50(m15 }:;) (23d)
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i=even

. i=1,2,34.
3i—1 i=o0dd

(24)

Equation (22) reduces to a more convenient form when
both sides of it are multiplied by the prefactor matrix S,
found on the left-hand side. Since S-S, =Sp2=l, the
identity 4 X 4 matrix, (22) becomes

1 d¢

jw‘@-—R¢. (25)
¢ is the four-element column vector in the FTD having
only interface tangential field components

Vl Ex
= =1 .- 26
AN 2€)

R is composed of matrix elements 7; related to the R’

matrix elements by

i=1,4
. j=1,2,3,4.
i=2,3

— g’
rij—rij,

(27)

_ .
r,j—— rU,

Translate y into the mth local layer shifted coordinate
system

_ milhj (28)

where 4, is the jth layer thickness and y,, = 0 corresponds
to an interface. Solutions to (25) in the y/ coordinate
system can be written as

$( 1) = *76(0).
Substituting (29) into (25) produces

{%I_R}¢,(0)=o (30)

where the attached i subscript’s meaning will be clarified
shortly. Equation (30) is a homogeneous equation in four
unknown ¢ vector components. It has four normal mode
vector solutions ¢,(0), constrained by the requirement that

)=0 (31)

to assure a solution. Equation (31) generates four k& 5 eigen-

values k. These k,, values are placed in (30) to find the

individual ¢,(0) normal mode vectors at y,, = 0. The nor-

mal mode vector ¢"(y,,) at y,, > 0 is found from ¢”(0) by

multiplication with a 4X4 matrix characterizing the mth
layer medium

(29)

k
det( >
w

¢ (77) =P (3)$7(0). (32)
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Fig. 1. Cross section of guided-wave structure containing n +1 layers of
thickness 4, each characterized by a 6 X 6 constitutive tensor M There
are n 1nterface impulse surface current line sources J . The whole
structure is bounded by two perfectly conducting electric walls

Here

P'"(y,;)

=¥ (0)K"(y,)¥™(0)"" (33)
=8, exp(jk ,ym) (34)
\If’"(0)=[¢';’(0) $7(0) ¢7(0) ¢7(0)]. (35)

The superscript m in (32)—(35) emphasizes the specializa-
tion of the eigenvector solution to the mth layer. ¥™(0) is
a 4X4 matrix constructed out of the four normal mode
vectors. ¢"( y,,) given by (32) is used in succeeding sections
to construct Green’s functions for waveguiding structures
of concern and to proceed on to a solution for the propa-
gation constant y.

III. HALF-OPEN GUIDED-WAVE STRUCTURE

Fig. 1 shows the structure of the waveguiding layered
configuration. It has top and bottom perfectly conducting
ground planes. Layers are characterized by thicknesses h,,
there being a total of »n +1 layers. There are n mterfaces
between the layers, and a total of n interface surface
currents J/. These surface currents are line sources and
may be thought of in an abstract sense as representing
perfectly conducting lines positioned at the interfaces.
Consequently, we set the jth surface current as

J=(%+2)8(x—x,). (36)
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J/ in (36) is a vector impulse line source located at x = x ;
and at the jth interface with y, =X/ Lk, [see (28)].
Solution of the guided-wave problem using (36) produces a
Green’s function field solution for the electric-field compo-
nents. Below in the FTD derivation of the electric-field
solution, J/ components are retained avoiding explicit use
of the spatial form in (36). This procedure is followed
because Green’s function convolution integrals over actual
current distributions on conductors in the spatial domain
become a product of a Green’s function dyadic G and
FTD currents. Implementation of the procedure involves
replacing the FTD expressions of J/ in (36) by the FTD
expressions of the actual current distributions. Each layer
is characterized by a single constitutive tensor MJ (see (12))
for the jth layer, there being a total of n +1 tensors for all
layers. The open structure to be analyzed is mathematically
and physically created by letting #,,, ; = c¢. In the (n + 1)th
layer, only + y outward propagating (or decaying) waves
are desired in this limit, and this fact is utilized later to
find the Green’s function.

The normal mode or eigenvector solutions found in
Section II must be superpositioned to represent the actual
(total) field solution in each layer A™(y.)

4
A™(yn) = L es?(rn).

i=1

(37)

The mapping of A™(0) into A™(y,,), which is essential to
the derivation below, is readily found using (32)
4

Y e,7(0)

=1

4
A(3n) = X e () o7(0) = 27(5,)

=P"(y,)Am(0).  (38)
The four-element column vector A™ is convenient to use
for applying interface or boundary conditions, since the
BC’s can be expressed solely in terms of tangential field
components. Electric-field components A7 and A% (E
and E™) at the mth interface are continuous. Magnetic-
field components A% and A% (H” and H™) are discon-
tinuous

A (k) H(h,) == ]2 (392)
A, (k)= A, (hy,) = T (39b)

as stated in the local mth layer coordinate system where
“+” or “—” denotes infinitesimal displacement along the
y-axis (h}, actually goes into the [m +1]th local system).
The BC’s at the interfaces in matrix notation are

14

Irm Im 0
fIm (h':)= 7 m (h;l)+ —js'z”
i i iz

or in abbreviated form
A"(h3)=A"(hp)+[0 0 —Jr Jr]T (40)

where the superscript 7 on the last vector means transpose.
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A™(y,,) in the mth layer is found by starting at y;=10
and proceeding through each layer using (38), accounting
for field match or mismatch along the way at successive
interfaces by enlisting (40). The result of this procedure is

A"(y2) = F™mA(0)

m—1 ‘
+ X Fmmcklo o =gk JK]T (41)
k=1

Fri)= T Pw).

J=m—I+1

(42)

In (42), h) = h, the jth layer thickness, except for the mth
layer where h) = y,. Equation (42) creates left ascending
products. F™! in (42) has a simple but elegant physical
interpretation. It is a mapping prefactor operator which
takes the quantity to its right and pulls it through / layers
until it arrives at y, in the mth layer. Applied to (41), the
operator with /= m takes the field vector AY(0) and draws
it through all m layers to the position y/ in the final mth
layer. When /= m — k as in the second operator acting on
the kth discontinuity BC, the operator pulls the BC sitting
on the kth interface, which is on top of the kth layer and
on the bottom of the k£ +1 layer, through the remaining
m — k layers.

AY(0) is unknown in (41) and needs to be determined so
that A™(y/) is uniquely specified. The first two compo-
nents of AY0) are A}(0)= AL(0)=0 due to the ground
plane BC. A4(0) and A%(0) are determined by using (41)
to connect the ground plane at y = y{= 0 and the (n +1)th
side of the nth interface. Invoking (41)

A"(0) = Fr+Lnt1(0) AL(0)

) ,
+ LFhkofo o - g8 TN @)
k=1

Here, one notes that F"*L+1=%Q)y= F="=k(p Y for n>
k> 0. A"*1(0) must be specified in order to solve (43) for
the necessary A'(0) components. First the normal modes
comprising A”*'(0) need’to be obtained. This layer is
isotropic with [see (12)]

A~ €n+1l : 0
Mn+1= _____ b .

a,, is available from (17), with D,=¢, ,p,,.; by (44).

&
Defining a’ and aj as the vectors containing their respec-

(44)

tive a/, i=2o0r5, j=1,3,4and 6
[ 0 ] ’ __jyen+1 1
0 w
ay= URLIEIN , al= kinin (45)
w w
- Q’“n_ﬂ 0
| e ] 0 i
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Inserting (44) and (45) into (23), using (17) and (24), allows R’ to be established

0 0
0 0
R'= . 5
Jvk, (e L=
n+l
@My w21”'n+1
y? Jk,
€n+1+ 2 2
W, Wy,

Normal mode eigenvalues k, are found by placing (46)
into (31) assisted by (27). The dispersion equation

(k2 —[k2,, - Kk2+y2]) =0 (47)

results with k2., = w’%, p,. - Equation (47) produces
two distinct eigenvalues, or a total of four normal modes,
two being degenerate. Placing &, into (30) and using three
of the four implied equations produces the eigenvectors

r*1(0). We choose k,, i=1 or 2, to be the distinct
eigenvalues, and denote the two different eigenvectors as-
sociated with each i by subscripts @ and b. Because the
(n +1)th layer is semi-infinite, only the outward propagat-
ing (or decaying) wave in the + y direction is displayed
below:

“k’l’«n+1k;1Jrl _ Jk,
ki +y? ki +v?
n+1 _ 0 n+1 _
0)= , 0)=
qbla ( ) _ j’ka (Plb ( ) B w€n+1k;’1+1
kr21+1+Y2 ki+1+72
L 1 i | 0

(48)
Notice that this degenerate normal mode solution consists
of TM, and TE, forms. Since the medium is isotropic, the
solution could have been resolved into other TM,, and TE,
forms where r = rectangular axis.

Equations (48) are used to construct the total field vector
at y,.,=0

A TH0) = 4,197, 1(0)+ B, 197, 1(0).

Equating (49) to (43) creates a single vector equation
comprised of four linear algebraic equations in four un-
knowns 4, ,,, B, ;, A4(0), and AY(0). A%(0) and A%(0)
are solved as

(49)

4
A0)= Y Cb,;j=3,4(orx,z)
i=1
n—1 . ; 5 N
Co= X (= B3Iz By i) =802 + 8,0
m=1

(51)

(50)

Jrk, - kz
w2€n+1 mr 2€n+1
2 .
Jvk,
nu‘n+1+ )
( A n+1 ""2€n+1

(46)

b, = "(_1)JDLO det[d;, &, —F, ] (52)
D,=det[¢,, ¢, —F —F|] 9
[ 4’?7(}1. b) e
<75i(a,b) = | $1ia.tn [(0) E~(3~4> = | Fics (54a,0)
i $lica. b) Ficla
sty
Fnn
o ”
| Fa sy

In (54), the component subscripts J, k, [ are cyclic, exclude
i (notation /), and equal 1 through 4. Equation (50) is
inserted into (41) so that A™(y.) is determined. The
E™h,) and E,(h,) electric-field components are then
extracted out of the resulting (41) and related to all the
interface surface current vectors (or surface current compo-
nents). The identical procedure is carried out for each
interface set of electric-field components, yielding a total of
n interface electric-field component sets related to » inter-
face surface current vectors. Dyadic G relates these two
sets.

The Green’s function G in the FTD relating the field
components at each interface U to all the interface currents
W, U= GW, is explicitly defined by

E11 gl E g2 i E gln jsll
B R S |
U=l = L=
by : l | VA
Ean Snl i Sn2 i {L S jsg

(56)

U and W are electric-field component and interface current
component vectors of size 2n. Subscript indices on their
field or current elements above denote x(j=1) or z(j = 2)
components. Elements of U are u,, and of W, w,. G is a

2n X2n matrix with each 2X2 S™” submatrix element



KROWNE: METHOD OF FINDING CHARACTERISTICS OF LAYERED MEDIA

given by
S/P =T, + Frym=r (57)
_( 1)j Z Fan—j ( kf;gn "+ F s
TP = p=12,---,n—1 (58a)

_( 1) ( 55 13 m+bz5 E‘r‘n,m »

(58b)

1

In (57), the second term is dropped if p > m

Propagation constant y is obtained from (56), the start-
ing point of a Galerkin process, by using basis (expansion)
and test functions. Represent each element of the W vector
as

N,

wl(kx’.Y)= Z qis(y)wls(kxﬂy) (59)
s=1

where w,, are the FTD basis functions which may be
chosen to be a complete set and g, are weight coefficients.
Multiply rows 1 through 2n of (56) by, respectively, wi,
through wg ;- with s"=1,2,-- -, N; creating N, equations
for the ith row. The total number of equations will be
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u,(x,v) and w,_(x,y) are the electric field and current
distributions on the interfaces. If one assumes perfect
conductors on the interfaces, w,,. =0 when u, # 0 and the
converse. The complementary nature of interface fields and
currents makes all ¥, = 0. It is not necessary for field or
current symmetry with respect to the x-axis to hold in
order to assure that the left-hand side of (66) is zero. The
homogeneous set of equations in (63) for the g, coeffi-
cients requires o

det(S,)=0 (67)
for a solution to exist. Equation (67) is the characteristic
dispersion equation in y to be solved. In general, (67)
produces an infinite set of vy, eigenvalues, each a complex
number v, = a, + jB,. a; is the attenuation constant and ,
the phase propagation constant. Phase velocity of the ith
eigenvalue is given by v,,=w/B; where « is the radian
frequency. Electromagnetic tangential fields can be ob-
tained from (41) in any layer by inserting the calculated v,.
Examination of (16) shows that it provides the solution for
the transverse-field components of either the normal mode
solution or the total field solution. For Ey”’ and I?I;"
components one sees that

Er [ar
N=X2" N. Integrate these equations over reciprocal k, =92 | pm (68)
space (drop the 1/27 factor) obtaining HT al
Nl N2n
Yls' = Z Xsl’iqls -+ Z Xl(z )q(2n)59 S’=1, 27 Tt N1
s=1 s=1
NZn
(2n)s Z X(Z") /P Z Xs('?:vn)(zn)q(Zn)s? s'=12,--+, N, (60)
s=1
where gives the total field solution result where a” are transposes
X = j‘ wxG, w dk. (61) of the vectors discussed in (45), and (17) is used.
s’s ij"ys
Y., = /‘°° uw* dic (62) IV. CLOSED GUIDED-WAVE STRUCTURE

—oQ
Equations (60) represent N equations in N unknown g;, so
that one can write

Y=5,0 (63)
with
x1 oy I oylen
—————b— e et S
_____ O
X(Zn)l: xem?| : X @memn
Q=[‘111 912 Qiv, 49n q(2n)N2,,]T.

(65)
Each X/, is the s’sth element of the X*/ submatrix S,.
Using FTD properties

(s ]
Y;s’(Y)zf ut(kx"Y)wlt'(kxﬂy)dkx
. — o0

=20 [ w(x)wi(x.)dx.  (66)

Again, reference to Fig. 1 for the abstract representation
of the closed waveguide structure to be studied is done as
in the previous section. Here, though, there is no need to
carry out a limiting process on the (n +1)th layer thick-
ness. The (n+1)th boundary is retained as a perfectly
conducting electric wall (or ground plane). Recall in Sec-
tion III that (41) was specialized to the situation where the
y =0 boundary was pulled through » layers and then
pushed infinitesimally across the rth interface into the
{(n +Dth region. Here, the mapping is extended to cover
the entire (n+1)th medium and arrive at the (n+1)th
boundary. The equation analogous to (43) for the present
case is

ANk, ) =Frrort (b, ) AN0)
+ Y Freteeik(p o oo -k JE]N

k=1
(69)
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Equation (69) was found by evaluating (41) at y, = h, ;.
BC’s on the (n+1)th boundary impose A7*h,,,)=
AV Yh,,,)=0. Putting all the relevant BC’s into (69)
gives

0 0
0 +1,n+1 0
H(h, ) |57 B0
ﬁz(hn—Fl) HZI(O)
0
n 0
+ ZFn+1,n+1—k —jk (70)
k=1 sz
i

as the equation to be solved for the two nonzero compo-
nents of AY(0) which allows A™(y.) in (41) to be calcu-
lated. Recognizing that only the first two rows of the
vectors on either side of the equality sign in (70) are
necessary for A'(0) component determination, the resulting
two linear inhomogeneous equations are solved to yield

2 n
Alz+2(0) = HII(O) = Z Z IS'IJ;’
J=1k=1

i,j=1,2(x,z)

(71)
-1 B
Il/jz(_1)t+j_l__)_[Fzr:;-hl;n+1F1r’1;-_1],n+1 k
¢
- Frr ] (1)

n+l,n+1
F13

nt+l,n+1l
F23

Fn+1,n+1
D, = det "

F27t+1)n+1 : (73)

A™(y,) is now known in terms of the interface surface
source current components by placing (71) into (41). After
carrying out a substantial amount of bookkeeping relating
all the interface electric-field and surface current compo-
nents based on the resulting (41), a Green’s function dy-
adic identical in form to (56) occurs. Submatrices S™? are
now defined differently

m,m—p

Sl'an = 7’;711) -‘(-—1)] 1,5—;

mp _ pm,myp m,myp
T;j F;S Itj+'F;4 IZ]'

(74)
(75)

Complex propagation constant eigenvalues vy, are ascer-
tained following the same steps discussed between (59) and
(67). Tangential and transverse electromagnetic fields are
again found, respectively, applying (41) and (68).

V. CoNCLUSION

The great value of the matrix method covered in this
paper is that it permits a systematic approach for solving
most planar guided-wave problems. Methodology is so
general as to afford solutions to the most complex aniso-
tropic layered problems. However, many simpler problems
are just as readily solved by the method. Computer pro-
gram construction based on the method should allow
workers in the microwave and millimeter-wave community
to easily deal with structures having a few layers to
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hundreds of layers, but use a technique which avoids the
use of mesh sizes and shapes as employed, for example, by
finite-difference and finite-element numerical approaches.
The matrix method was formulated in the Fourier-trans-
formed domain (or spectral domain) because of the ad-
vantage of converting integral expressions or integral equa-
tions into algebraic and differential equations. Although
the approach in the paper was differential, the reader
should be aware that electromagnetic-field information and
current-distribution information must still be obtained by
converting from the Fourier domain to the real or direct
space domain by inverse Fourier transformations. Propa-
gation constant y information does not require such an
inverse transformation (since it is an eigenvalue).

As presented here, the formulation yields, in principle,
exact field and propagation constant solutions provided an
unlimited amount of basis functions in complete sets are
employed and sufficient computer core and time are avail-
able. Depending on the specific layered probiem attacked,
a finite number of basis functions will be required and the
problem solvable within an acceptable level of accuracy or
approximation. The starting point of the method is the
specification or determination of constitutive tensor M,
characterizing each layer i. M, should be determined from
the physical microscopic or macroscopic properties of each
layer material under consideration. Since M, is a macro-
scopic tensor, it is essential that all microscopic phenomena
leading to electromagnetic-field interactions be represent-
able ultimately at the macroscopic level. This conversion
from microscopic to macroscopic representation is required
for all layers if the formulation technique is to work.

For example, in a relatively thick semiconductor layer
where the bulk M, can be used, M, would arise from
various microscopic transport effects, such as impurity
coulomb scattering, alloy scattering, carrier-carrier scatter-
ing via coulomb and exchange interactions, and intravalley
and intervalley scattering. Converting the above semicon-
ductor transport effects from the microscopic to the macro-
scopic level is well understood and regularly done. For
layers which are narrow and lead to separation and quanti-
zation of carrier energy levels in the transverse or y-direc-
tion, this two-dimensional effect may play a noticable role
in altering the scattering behavior through change of car-
rier quantum mechanical wavefunctions ¥,. If the layer
walls are considered impenetrable to ¥,, then size effect,
energy level splitting on the order of single particle €, =
(nhw/h,)%/2m* [14] can be expected where % is Planck’s
constant and m* the carrier effective mass. In a general
layered problem, the approximation of impenetrable walls
may be unsuitable, in which case leaky interface walls
would exist requiring a simultaneous solution of ¥, in all
layers in the structure. Such a multilayer determination of
¥, is not unlike the macroscopic electromagnetic problem
treated in this paper. Nevertheless, however ¥, is obtained
(including or not including many body effects), it must be
utilized to go from microscopic considerations to the mac-
roscopic determination of M,. The layer size effect dis-
cussed here is also related to similar two-dimensional



KROWNE: METHOD OF FINDING CHARACTERISTICS OF LAYERED MEDIA

quantum mechanical phenomena, namely quantum me-
chanical well creation and transport effects in metal-insu-
lator-semiconductor (MIS) structures and devices [15].
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