
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-32, NO. 12> DECEMBER 1984 1617

Fourier Transformed
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Abstract —A planar structure having arbitrarily located conductor lines

immersed in complex anisotropic media presents one with a very general

guided wave problem. This problem is solved here by a rigorous formulat-

ion technique characterizing each layer by a 6X 6 tensor and finding the

appropriate Fourier trasfo~ed Green’s function matrix G of 2n x 2n
size. From G, a method-of-moments solution for the propagation character-

istics follows, including propagation constant eigenvahres and field eigen-

vectors at all spatiaf Ioeations. The method is very versatile and can handle

a huge class of microwave or millimeter-wave integrated circuit or mono-

lithic circuit problems, no matter how simple or complex as long as they

possess planar symmetry.

I. INTRODUCTION

A DVANCES in materials technology are allowing the

contiguous growth of substances of considerably dif-

ferent properties. Present integrated-circuit processing

techniques allow various combinations of metals, dielec-

trics, and semiconductors to be layered together where

these materials may or may not be crystalline. Processing

can include vapor phase (VPE), liquid phase (LPE), or

molecular beam expitaxial (MBE) growth for deposition of

layers of semiconductors or dielectrics. An additional

method for metal deposition includes electron-beam heat-

ing and vacuum deposition. The number of processing

techniques are numerous and have varying degrees of

success in enabling dissimilar materials to be deposited

adjacently. These techniques display a large range of capa-

bilities to make defect-free layers, uniform doping level

semiconductors, and controllable layer thicknesses.

We may expect to see in the future the use of magnetic

films [1], [2] (metallic or nonmetallic), uniaxial and biaxial

dielectric films [3]–[6], ferrite films, magnetically induced

semiconductor gyroelectric films, and widely varying com-

positions of compound films, such as binary, ternary, and

quaternary compounds [7]. MBE and some other methods

are encouraging the use of layers which are thin enough

(on the order of tens to hundreds of angstroms) to require

modification of the three-dimensional (3D) transport anal-

ysis (semiclassical or quantum mechanical) so as to include

the two-dimensional (2D) electron gas effect. The change

from 3D to 2D transport on the microscopic level after

appropriate analysis can be accounted for in terms of
macroscopic permittivit y and permeability y tensors.
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More creative use of materials, especially for monolithic

integrated circuits, will probably occur in the future. Be-

sides some of the more familiar classes of anisotropic

materials mentioned above, materials with optical activity

may be employed in integrated-circulit applications. Fi-

nally, very complex materials with a combination of bire-

fringent gyroelectric, gyromagnetic, optical rotation, or

other anisotropic properties may be utilized. Furthermore,

the use of semiconductors, dielectrics, or magneto-materi-

als rotated off principal axes or convenient axis coordi-

nates can be envisioned.

Conventional methods either in direct or Fourier-trans-

formed space using planar symmetry are not general enough

to enable the interested worker in the microwave or milli-

meter-wave area to readily solve such complex problems

outlined above. The theoretical formulation presented in

this paper shows how to solve for the propagation constant

y and electromagnetic fields in a multilayered planar struc-

ture having complex anisotropic layers. From the field and

y solution, the characteristic impedance Z, may also be

determined by an appropriate definition in terms of a

current–voltage power flow combination. The only restric-

tions to the formulation below are that the conductors are

assumed to be lossless and infinitesimally thick.

Expeditious ways of solving field problems based on

Maxwell’s equations, but avoiding gauge methods, are pos-

sible ,by using field matrix techniques. Solving the field

problem by eliminating all but one field component vari-

able generates a fourth-order partial differential equation

(PDE) for linear media. The resulting fourth-order PDE

can be extremely complex and unwieldly to handle; how-

ever, there is some justification for developing the solution

in such a manner if the medium has special symmetry.

Simpler PDE’s result if the problem is reduced down to

two field components. Two second-order PDEs must be

employed in two field components to find the field solu-

tion. Matrix techniques using two field components often

have been used in the optics [8], [9] and microwave/elec-

tromagnetics [10] areas. Nevertheless, as the medium be-

comes more complex with less symmetry, the two-compo-

nent methods become increasingly difficult to implement.

Lack of conductor line symmetry also complicates the

two-component solution methods.

Use of four components has been shown in reflection

and transmission light problems to lead to simple PDE’s
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[11]; [12]. A four-component method has the great ad-

vantage of enabling the use of only first-order PDE’s. The

four-component technique also has the ability to allow

direct field matching at layer boundaries or interfaces [13].

In [13], it is pointed out that such field matching avoids the

need to employ auxiliary equations in the two suppressed

field components if using the two-component method, thus

providing some economy in problem solving.

Here, a new formulation technique for solving the uni-

form (in the z-direction) waveguide propagation problem is

developed for layered media possessing complex aniso-

tropic properties. A four-component method is utilized by

adapting the 4 X 4 matrix approach in [13] to the spectral

domain or Fourier-transform domain (FTD). Significant

advantage is gained by working in the FTD because Green’s

function convolution integrals for determination of field

quantities due to current sources are converted into alge-

braic products. The FTD process, in addition, treats asym-

metrical conductor lines in the same way as it treats

symmetrical conductor lines. Section II develops the nor-

mal mode field solution formulation in the FTD. One

should be alerted that the chosen column field vector used

here differs from [13] in the component selection and

arrangement. Section III gives the solution to the open or

uncovered multilayered guided-wave problem. The Green’s

function G which is derived pertains to a perfectly con-

ducting ground plane. From G, the procedure for determin-

ing the propagation constant y is provided for the method-

of-moments numerical technique assisted by identical

expansion and test basis functions (Galerkin approach).

Determination of electromagnetic field components using

y is also covered. Section IV provides the solution to the

closed guided-wave problem where the electromagnetic

fields are sandwiched between two ground planes.

II. NORMAL MODE FIELD SOLUTION

Each layer has four eigenfunction field solution sets.

Superposition of these four normal mode sets of field

components constitutes the actual total field solution obey-

ing all boundary conditions (BC). In this section, the

normal modes are found for the m th layer without regard

to the BC’S. Imposition of the various BC’S as part of the

overall propagation constant y determination is done in

the following sections, where specific waveguide structures

are considered.

Time harmonic, plane guided-wave solutions propor-
tional to exp ( j~t – yz) are assumed. Propagation constant

y = a + ~B makes the wave + z-direction propagating if
~ >0. Insertion of the time harmonic nature of the plane

wave into Maxwell’s two curl equations creates the single

sourceless matrix equation

LTVJ = juv(. (1)

Magnetic current sources are not considered in the treat-

ment in this paper and electric current sources are included

by discontinuity BC’S at interfaces between layers. Vi and

V< are column vectors containing electromagnetic-field

components in rectangular coordinates both tangential to

the parallel interfaces (xz-plane) and parallel to the y-axis.

Vi consists of the electric-field E and magnetic-field H

components. V; consists of the electric displacement field

D and the magnetic displacement field B components
r. . .

E:

E;

v:= Ez’

H; ‘

H;

H:’

(2)

Primes indicate that these vectors contain x, y, and z

spatial variation with the z spatial variation to be dropped

shortly. Operator L= is a 6 x 6 matrix composed of single

partial-derivative operators. LT can be expressed as

(3)

where submatrix Ll is a 3 X 3 matrix

1---I
o da———

az ay

Ll= ; 0–;. (4)

aa
ay ax

o

To remove explicit z spatial dependence from (l), V~ and

v’~ are defined as

V~ = Vie’= (5a)

V~ = V<e”. (5b)

The uniform (in z-direction) guided-wave problem with

(5) can now be solved in transformed space by going from

x direct space to kX reciprocal space. One-dimensional

Fourier-transform pair (~, ~) is defined as

~(kX, y)=~~f(x, y)e-J~xxdx
—Ix

(6a)

f(x, y)=& J_mf(kx,y)eJkxxdkx (6b)
w

where ~(x, y) is any real space variable. Using (5) and (6)

allows conversion of the guided-wave problem as given by

(1) into the FTD

Z~PL = ju~~ (7)

where tildes denote FTD variables and

(8)

(9)
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Fourier-transformed electromagnetic-fields ~~ and ~~ are

FL= F-R= (lo)

The medium of each laver can be characterized bv a. .
single 6 X 6 constitutive tensor & in direct space. W relates

v: to vi

v;= fiv~ (11)

where

(12)

? and P are, respectively, the permittivity and permeability

tensors. 2 can lead to electric birefringence in uniaxial and

biaxial dielectric crystals. Gyroelectric nonreciprocal be-

havior can be induced through t. This may occur by

applying a magnetic field to a doped semiconductor layer

in a Faraday, Voigt, or mixed configuration. Similarly,

using ji, magnetic birefringence can be obtained in a dual

fashion in uniaxial and biaxial magnetic crystals.

Gyromagnetic nonreciprocal properties can be had by

applying a magnetic field to a ferrite material, for example.

@ and ~ tensors are responsible for optical activity. ~

could create nonlinear effects by being dependent on the

field vector Vi. fi also could be dependent on the coordi-

nates x and y. It is possible that V might be dependent

on both the field vector and coordinates. In order to

maintain a linear problem solution, J?l is treated as a

constant tensor. x-coordinate variation of Il?l cannot be

built back into the problem solution by such an assump-

tion, but y-coordinate variation can be by slicing the layer

with fi y-dependence into thin sections. Fourier transfor-

ming (11) and using (5) yields

VR = tiPL. (13)

Placing (13) into (7) produces the equation which must

be solved for the normal mode field vectors

%~~~ = juMVL. (14)

fiz and ~. vector components of fi~ (i.e., &Y, fiY) are

algebraically expressible in terms of the other field compo-

nents using rows 2 and 5 of (14)

6

– #4 – jkXP6 = j~ ~ rnz,~ (15a)
i=l

i=l

The solution of (15) is

where 81, are Kronecker deltas. a ~,

a’
a =2

‘J D.

1619

coefficients are

D. = mzzmss– mzs~sz

“l=m,,(m,l-i)-mzlm,,
“,=mz,(m,,-:)-mz,m,
a~d=m25m5d

-m,s(mz,+il

a~~=m~,m,e
-m5$(m2’5 +:1

a~l=m,zmzl
-mzz[m,--$)

a;, = m52m23
-m,z[m,-?l

a~,=m,(mz,+i)-mm,

“,=mz(me+:)-mm,e

(17)

(18)

(19a)

(19b)

(19C)

(19d)

(20a)

(20b)

(20C)

(20d)

In (18)–(20), ml, are the & tensor elements.

Rows 1, 3, 4., and 6 of (14) are first-order linear differen-

tial equations

d& 6
.

— = ju ~ ml,~
‘u+ a“

(21a)
,=1

dfi. 6

——

dy
+ jkX~5 = ju ~ ‘m,,~ (21.b)

1=1

d~~
6

– yr, – dy— = ju ~ m,,~. (21C)
,=1

6

—. .

dyl
jkX~2 = ju ~ m6,~. (21d)

,=1

Using (16) to eliminate ~z and ~, from (21) produces

~$i IN]

o Oofil fil
–100P3 i23

= R’
o –1 o P4 ti4 “

(22)

o 01V6 F6

In (22), the matrix elements r,; of R’ are

“=mee+as,mes+az~(mez+:) ‘23a)

‘~=m,’+a,’m,,+az’(m~z+;) ‘23b)

‘~=m,~+az,m,z+ae(m,s-%) ‘23C)

(
_Y_

r:, = mle + a2@m12-t a58 m15 — .
)

(23d)
J(.J,=1
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‘=9(’)=R%::] ‘=17234-
(24)

Equation (22) reduces to a more convenient form when

both sides of it are multiplied by the prefactor matrix SP

found on the left-hand side. Since Sp. SP = S; = I, the

identity 4 x 4 matrix, (22) becomes

(25)

~ is the four-element column vector in the FTD having

only interface tangential field components

R is composed of matrix elements ri, related to the R’

matrix elements by

riJ = ri; , i=l,4

)

j=l,2,3,4. (27)
r,j=—r ’

ZJ~
‘= ’,3 ‘

Translate y into the m th local layer shifted coordinate

system

m—1

Y;=y– ~h, (28)
1=1

where h] is the j th layer thickness and y; = O corresponds

to an interface. Solutions to (25) in the y; coordinate

system can be written as

Substituting (29) into (25) produces

{%R)@JO)=O(30)

where the attached i subscript’s meaning will be clarified

shortly. Equation (30) is a homogeneous equation in four

unknown @ vector components. It has four normal mode

vector solutions ~,(0), constrained by the requirement that

‘et(+R)=O (31)

to assure a solution. Equation (31) generates four k, eigen-

values kv,. These k,, values are placed in (30) to find the

individual +,(0) normal mode vectors at y~ = O. The nor-

mal mode vector @~(y;) at y; >0 is found from o:(O) by

multiplication with a 4 X 4 matrix characterizing the m th

layer medium

w(Y79=My;)w(o). (32)

///[////////1// I II / (1 //

M“
r

●

●

✍✎

h,12

M,+2 3,,+,
i

hJ:l
M)+ I 3,,,

i

M,

M,– I hllJ,,)-z j-

M,- 2 :,,j_3
+

hj– 2

●

●

L ;,,,(,,,,,,,:,
Js2

M2 ~,1
t!z

MI
i,

,x
z

In

l.– 1

1,+ ,

1,+1

1,

I,_ ,

I,_ 2

1,–3

I*

11

Fig. 1. Cross section of guided-wave structure containing n + 1~ayers of

thickness h,, each characterized by a 6 x 6 constitutive tensor M,. There
are n interface impulse surface current line sources J,, ~. The whole

structure is bounded by two perfectly conducting electric wafls.

Here

P~(y;)= v~(o)Km(y;)vm(o)-l (33)

KU= 13Z,exp ( jk~ y; ) (34)

~m(o) = [ w(o) 4T(0) +T(o) +7(0)]. (35)

The superscript m in (32)–(35) emphasizes the specializa-

tion of the eigenvector solution to the mth layer. *‘(O) is

a 4 x 4 matrix constructed out of the four normal mode
vectors. q~( y; ) given by (32) is used in succeeding sections

to construct Green’s functions for waveguiding structures

of concern and to proceed on to a solution for the propa-

gation constant y.

HI. HALF-OPEN GUIDED- WAVE STRUCTURE

Fig. 1 shows the structure of the waveguiding layered

configuration. It has top and bottom perfectly conducting

ground planes. Layers are characterized by thicknesses h,,

there being a total of n + 1 layers. There are n interfaces

between the layers, and a total of n interface surface

currents J~. These surface currents are line sources and

may be thought of in an abstract sense as representing

perfectly conducting lines positioned at the interfaces.

Consequently, we set the jth surface current as

~J=(i+E)a(x– x,). (36)
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~J in (36) is a vector impulse line source located at x = Xj

and at the jth interface with yj = Zi:llh ~ [see (28)].

Solution of the guided-wave problem using (36) produces a

Green’s function field solution for the electric-field compo-

nents. Below in the FTD derivation of the electric-field

solution, J; components are retained avoiding explicit use

of the spatial form in (36). This procedure is followed

because Green’s function convolution integrals over actual

current distributions on conductors in the spatial domain

become a product of a Green’s function dyadic G and

FTD currents. Implementation of the procedure involves

replacing the FTD expressions of ~J in (36) by the FTD

expressions of the actual current distributions. Each layer

is characterized by a single constitutive tensor fij (see (12))

for the jth layer, there being a total of n + 1 tensors for all

layers. The open structure to be analyzed is mathematically

and physically created by letting h ~+ ~~ co. In the ( n + l)th

layer, only + y outward propagating (or decaying) waves

are desired in this limit, and this fact is utilized later to

find the Green’s function.

The normal mode or eigenvector solutions found in

Section II must be superpositioned to represent the actual

(total) field solution in each layer A~(y~)

Am(Y;)= i eA’(Y;). (37)
i=~

The mapping of A~(0) into A~( y; ), which is essential to

the derivation below, is readily found using (32)

4 A

= Pw(yjA~(0). (38)

The four-element column vector Am is convenient to use

for applying interface or boundary conditions, since the

BC’S can be expressed solely in terms of tangential field

components. Electric-field components AT and A; ( ~Xm

and #=m) at the m th interface are continuous. Magnetic-

field components A: and A? (H: and fizm) are discon-

tinuous

as stated in the local m th layer coordinate system where

“+’’o r’’-” denotes infinitesimal displacement along the

y-axis (h; actually goes into the [m+ l]th local system).

The BC’S at the interfaces in matrix notation are

!](h,)=pj(hi)+p.y
or in abbreviated form

Am(h; )= Am(h; )+[() O –~,; .R]~ (40)

where the superscript Ton the last vector means transpose.

A~( y;) in the mth layer is found by starting at y{= O

and proceeding through each layer using (38), accounting

for field match or mismatch along the way at successive

interfaces by enlisting (40). The result of this procedure is

Am(y/j = F’m’mA’(())

k=l

(42)

In (42), hj = h,, the jth layer thickness, except for the mth
layer where h;= y;. Equation (42) creates left ascending

products. F “ 1 in (42) has a simple but elegant physical

interpretation. It is a mapping prefactor operator which

takes the quantity to its right and pulls it through 1 layers

until it arrives at y;, in the m th layer. Applied to (41), the

operator with 1 = m takes the field vector Al(O) and draws

it through all m layers to the position y~ in the final m th

layer. When 1 = m - k as in the second operator acting on

the k th discontinuity BC, the operator pulls the BC sitting

on the k th interface, which is on top of the k th layer and

on the bottom of tlhe k + 1 layer, through the remaining

m — k layers.

AI(O) is unknown in (41) and needs to be determined so

that Am( y~ ) is uniquely specified. The first two compo-

nents of AI(O) are A\(O)= AIZ(0) = O due to the ground

plane BC. Alq(0) and All(0) are determined by using (41)

to connect the ground plane at y = y{ = O and the (n + l)th

side of the n th interface. Invoking (41)

An+l(()) = Fn+l, n+l (0) A’(0)

+ ~ F“+l@-k(@[O O --~; ~:]=. (43)
k=l

Here, one notes that F ‘+l’n+l-k(0) =Fn’n-k(hn) for n >

k >0. A“+l(0) must be specified in order to solve (43) for

the necessary Al(O) components. First the normal modes

comprising A“+l(0) need’ to be obtained. This layer is
isotropic with [see (12)]

(44)

a is available from (17), with Da = c.+ ~Kn + ~ by (44).

;efining a ~ and aj as the vectors containing their respec-

tive a:,, i=20r5, ,j=l,3,4and6

o
0

hw+l
(d

kxl-h+l-
(d
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Inserting (44) and (45) into (23), using (17) and (24), allows R’ to reestablished

o“ o
j~k.

6)2<n+l

o 0

(46)

o 0

I 41n+l \
,.,.

4-h+l /

o 0

Normal mode eigenvalues kY, are found by placing (46)

into (31) assisted by (27). The dispersion equation (52)

{kjt-[k:+l-k:+y 2]}2=0 (47) Do= det [ 411. % – ~s –F4] (53)

results with kf+ ~ = U2E~+ ~p ~+ ~. Equation (47) produces

two distinct eigenvalues, or a total of four normal modes,

two being degenerate. Placing kY, into (30) and using three

of the four implied equations produces the eigenvectors

+;+ l(0). We choose kYt, i = 1 or 2, to be the distinct

eigenvalues, and denote the two different eigenvectors as-

sociated with each i by subscripts a and b. Because the

(n+ l)th layer is semi-infinite, only the outward propagat-

ing (or decaying) wave in the + y direction is displayed

l:](o)‘(34)=‘54aii(a>b) = hrk(a, b)

&,= (55)

below:

+;;1(0) =

In (54), the component subscripts j, k, 1 are cyclic, exclude

i (notation ;), and. equal 1 through 4. Equation (50) is

inserted into (41) so that A~( y; ) is determined. The
jjXn( h ~) and Zz(h w) electric-field components are then

extracted out of the resulting (41) and related to all the

interface surface current vectors (or surface current compo-

nents). The identical procedure is carried out for eachl-l Lo
(48) interface set of electric-field components, yielding a total of

n interface electric-field component sets related to n inter-

face surface current vectors. Dyadic G relates these two

sets.

The Green’s function G in the FTD relating the field

components at each interface U to all the interface currents

Notice that this degenerate normal mode solution consists

of TM= and TEZ forms. Since the medium is isotropic, the

solution could have been resolved into other TM. and TE~

forms where n = rectangular axis.

Equations (48) are used to construct the total field vector

–oat y;+ ~—

A“+’(o) =~n+l@;:’(o)+ ~n+lo7:1(o). (49)

Equating (49) to (43) creates a single vector equation

comprised of four linear algebraic equations in four un-

knowns A.+ ~, B.+,, Al,(O), and A1.(0). Al~(0) and Aid(0)

are solved as

A~(0)= ~ C,b,z; j=3,4 (orx, z) (50)
i=l

n—1

c,= ~ (– q’”-m~,;+ <:’”-mJ.;)–il,3.7: + 8,4.7;
~=1

(51)

W, U= G W, is explicitly defined by

I

I ‘I

----- I ---- l–—––_l--T—–
1.

––”–– ;____ ~__ : .

~nl~sn2~ . . . ~snn

k

u= = GW.

(56)

—

I
—.—
E:

E;

U and W are electric-field component and interface current

component vectors of size.2 n. Subscript indices on their

field or current elements above denote x( j = 1) or z( j = 2)

components. Elements of U are u,, and of W, w,. G is a

2n x 2n matrix with each 2 X 2 SmJ’ submatrix element
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given by

S,7P = ~-~p + Fi~L’-P (57)

[

-(-1)~ ~ F:,\:jp(bx,~~’m +bz,~~>rn),

k=l
jc~P ? p=~, z,... , n –1 (58a)

_(-l)~(bX,5_j~~ ’m+ bz,5_j~~>m)>

p = n. (58b)

In (57), the second term is dropped if p > m.
%

Propagation constant y is obtained from (56), the start-

ing point of a Galerkin process, by using basis (expansion)

and test functions. Represent each element of the W vector

as

~

w,(kX, y)= z 4is(Y)wls(~X7y) (59)
~=1

where Wi, are the FTD basis functions which may be

chosen to be a complete set and q,, are weight coefficients.

Multiply rows 1 through 2n of (56) by, respectively, wfi,

through w$.)~, with s‘ = 1,2,””0, Ni creating N, equations

for the ith row. The total number of equations will be

N = Z~jlNZ. Integrate these equations over reciprocal kx

space (drop the 1/27 factor) obtaining

N, N,.

where

1623

Ui(x, y) and w,,,(x, y ) are the electric field and current

distributions on the interfaces. If one assumes perfect

conductors on the interfaces, WI,, = O when u, # O and the

converse. The complementary nature of interface fields and

currents makes all ~.$, = O. It is not necessary for field or

current symmetry with respect to the x-axis to hold in

order to assure that the left-hand side of (66) is zero. The

homogeneous set cjf equations in (63) for the qi, coeffi-

cients requires

det(SX)=O (67)

for a solution to exist. Equation (67) is the characteristic

dispersion equation in y to be solved. In general, (67)

produces an infinite set of yi eigenvalues, each a complex

number yi = ai + j$i. ai is the attenuation constant and Jll

the phase propagation constant. Phase velocity of the ith

eigenvalue is given by UPi= LO//3i where a is the radian

frequency. Electromagnetic tangential fields can be ob-

tained from (41) in any layer by inserting the calculated y,.

Examination of (16) shows that it provides the solution for

the transverse-field components of either the-normal mode

solution or the total field solution. For ~Ym and HYm

components one sees that

(68)

. . .

. . .

..-

Y(2n)s’= ~ X$$)’ql, + .-. + ~ X:~)(2”)q,,n,~, s’==1,2,. . . . N,. (60)
~=1 S=l

Jx:( = wWi:,GiJW1~ dkx
—m

J
y,! = w UiWi;/ dkx .

—0S

(61)

(62)

Equations (60) represent N equations in N unknown qi, so

that one can write

Y=SXQ (63)

with

[

Xll : X12 ; . . . ~ Xw)
–--–-k–––––-l–––-–+–––––––

Sx= ~ / I 1:

__~__L––___ J__-–”––––”___

x(z~)l ~ X(’n)’ ~ . . . ~ x(z~)(’~)1 (64)

Q = [(?,1 912 “ “ “ !hN, 9’1 “ “ “ q(2n)N2n]‘.

(65)

Each X~~ is the s‘s th element of the X’J submatrix SX.

Using FTD properties

~$,(y)=~m ul(kx, y)w:,(kx, y)dkx
—w

gives the total field solution result where a; are transposes

of the vectors discussed in (45), and (17) is used.

IV. CLOSED GUIDED-WAVE STRUCTURE

Again, reference to Fig. 1 for the abstract representation

of the closed waveguide structure to be studied is done as

in the previous section. Here, though, there is no need to

carry out a limiting process on the (n + l)th layer thick-

ness. The (n + l)th boundary is retained as a perfectly

conducting electric wall (or ground plane). Recall in Sec-

tion III that (41) was specialized to the situation where the

y = O boundary was pulled through n layers and then

pushed infinitesimally across the n th interface into the

(n+ l)th region. Here, the mapping is extended to cover

the entire (n+ l)th medium and arrive at the (n+ l)th

boundary. The equation analogous to (43) for the present

case is

A~+l(h~+l) = F“+l, n+l(h~+l)Al(0)

+ ~ Fni-l, ni–1-k (hn+,)[o o -i: ~s$
k=l

(69)
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Equation (69) was found by evaluating (41) at y;+ ~= h.+ ~.

BC’S on the (n+ l)th boundary impose A;+l(hn+l) =

A;+ 1(h.+,)= O. Putting all the relevant BC’S into (69)

gives

[2i:J=Fn+1’n+lki:l
as the equation to be solved for the two nonzero compo-

nents of Al(O) which allows Am( y; ) in (41) to be calcu-

lated. Recognizing that only the first two rows of the

vectors on either side of the equality sign in (70) are

necessary for AI(O) component determination, the resulting

two linear inhomogeneous equations are solved to yield

AIZ+Z(0) = @(0)= i i l;~;, i,j=l,2(x, z)
~zlkzl

(71)

n+l, n+l n+l, n+l–k
~;= (–l)’+’; [F2,5-z ‘1,5-,

(73)

Arn( y; ) is now known in terms of the interface surface

source current components by placing (71) into (41). After

carrying out a substantial amount of bookkeeping relating

all the interface electric-field and surface current compo-

nents based on the resulting (41), a Green’s function dy -

adic identical in form to (56) occurs. Submatrices S‘~ are

now defined differently

Complex propagation constant eigenvalues y, are ascer-

tained following the same steps discussed between (59) and

(67). Tangential and transverse electromagnetic fields are

again found, respectively, applying (41) and (68).

V. CONCLUSION

The great value of the matrix method covered in this

paper is that it permits a systematic approach for solving

most planar guided-wave problems. Methodology is so

general as to afford solutions to the most complex aniso-

tropic layered problems. However, many simpler problems

are just as readily solved by the method. Computer pro-

gram construction based on the method should allow

workers in the microwave and millimeter-wave community

to easily deal with structures having a few layers to

hundreds of layers, but use a technique which avoids the

use of mesh sizes and shapes as employed, for example, by

finite-difference and finite-element numerical approaches.

The matrix method was formulated in the Fourier-trans-

formed domain (or spectral domain) because of the ad-

vantage of converting integral expressions or integral equa-

tions into algebraic and differential equations. Although

the approach in the paper was differential, the reader

should be aware that electromagnetic-field information and

current-distribution information must still be obtained by

converting from the Fourier domain to the real or direct

space domain by inverse Fourier transformations. Propa-

gation constant y information does not require such an

inverse transformation (since it is an eigenvalue).

As presented here, the formulation yields, in principle,

exact field and propagation constant solutions provided an

unlimited amount of basis functions in complete sets are

employed and sufficient computer core and time are avail-

able. Depending on the specific layered problem attacked,

a finite number of basis functions will be required and the

problem solvable within an acceptable level of accuracy or

approximation. The starting point of the method is the

specification or determination of constitutive tensor ~,

characterizing each layer i. fi, should be determined from

the physical microscopic or macroscopic properties of each

layer material under consideration. Since fil is a macro-

scopic tensor, it is essential that all microscopic phenomena

leading to electromagnetic-field interactions be represent-

able ultimately at the macroscopic level. This conversion

from microscopic to macroscopic representation is required

for all layers if the formulation technique is to work.

For example, in a relatively thick semiconductor layer

where the bulk fii can be used, fii would arise from

various microscopic transport effects, such as impurity

coulomb scattering, alloy scattering, carrier-carrier scatter-

ing via coulomb and exchange interactions, and intravalley

and intervalley scattering. Converting the above semicon-

ductor transport effects from the microscopic to the macro-

scopic level is well understood and regularly done. For

layers which are narrow and lead to separation and quanti-

zation of carrier energy levels in the transverse or y-direc-

tion, this two-dimensional effect may play a noticable role

in altering the scattering behavior through change of car-

rier quantum mechanical wavefunctions WC. If the layer

walls are considered impenetrable to ~c, then size effect,

energy level splitting on the order of single particle ~. =

(nhT/h.)2/2m* [14] can be expected where h is Planck’s
constant and m* the carrier effective mass. In a general

layered problem, the approximation of impenetrable walls

may be unsuitable, in which case leaky interface walls

would exist requiring a simultaneous solution of T, in all

layers in the structure. Such a multilayer determination of

*C is not unlike the macroscopic electromagnetic problem

treated in this paper. Nevertheless, however q?Cis obtained

(including or not including many body effects), it must be

utilized to go from microscopic considerations to the mac-

roscopic determination of ~,. The layer size effect dis-

cussed here is also related to similar two-dimensional
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quantum mechanical phenomena, namely quantum me-

chanical well creation and transport effects in metal-insu-

lator–semiconductor (MIS) structures and devices [15].
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